如图,在直三棱柱ABC—A1B1C1中,
,
,直线B1C与平面ABC成30°角。
(1)求证:平面B1AC⊥平面ABB1A1;
|
、方法一:解:(1)
三棱柱ABC—A1B1C1为直三棱柱
底面ABC
又
AC
面ABC
AC
又![]()
![]()
又
AC
面B1AC
…………(6分)
(2)
三棱柱ABC—A1B1C1为直三棱柱
底面ABC
为直线B1C与平面ABC所成的角,即![]()
过点A作AM⊥BC于M,过M作MN⊥B1C于N,加结AN。
∴平面BB1CC1⊥平面ABC
∴AM⊥平面BB1C1C
由三垂线定理知AN⊥B1C从而∠ANM为二面角B—B1C—A的平面角。
设AB=BB1=![]()
在Rt△B1BC中,BC=BB1![]()
在Rt△BAC中,由勾股定理知![]()
又![]()
在Rt△AMC中,![]()
在Rt△MNC中,![]()
在Rt△AMN中,![]()
即二面角B—B1C—A的正切值为![]()
方法二:可以用空间向量求解,过程略。
科目:高中数学 来源: 题型:
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
查看答案和解析>>
科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题
(本小题共l2分)
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]
P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
![]()
查看答案和解析>>
科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题
(本小题共l2分)
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
![]()
查看答案和解析>>
科目:高中数学 来源:四川省高考真题 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.
(I)求证:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com