精英家教网 > 高中数学 > 题目详情
如图8,△A.BC中,A.D为△A.BC边上的中线且A.E=2EC,求的值.

图8

活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值.

解:设=λ,=μ.

=,即-=-,

=(+).

又∵=λ(-),

==+.①

又∵,即-=μ(-),

∴(1+μ)=,=+.

=,∴=+.②

比较①②,∵不共线,

解之,得

点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在△ABC中,AB=5,BC=3,CA=4,且O是△ABC的外心,则
OC
CA
=(  )
精英家教网
A、6B、-6C、8D、-8

查看答案和解析>>

科目:高中数学 来源: 题型:

A.选修4-1:几何证明选讲
如图,直角△ABC中,∠B=90°,以BC为直径的⊙O交AC于点D,点E是AB的中点.
求证:DE是⊙O的切线.
B.选修4-2:矩阵与变换
已知二阶矩阵A有特征值-1及其对应的一个特征向量为
1
-4
,点P(2,-1)在矩阵A对应的变换下得到点P′(5,1),求矩阵A.
C.选修4-4:坐标系与参数方程
在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知直线l的极坐标方程为ρcos(θ-
π
4
)=
2
,曲线C的参数方程为
x=2cosα
y=sinα
(α为参数),求曲线C截直线l所得的弦长.
D.选修4-5:不等式选讲
已知a,b,c都是正数,且abc=8,求证:log2(2+a)+log2(2+b)+log2(2+c)≥6.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.
(1)在△ABC中,AB=
 

(2)当x=
 
时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(不等式选做题).不等式:|x-1|+|x+2|<5的解集是
{x|-3<x<2}
{x|-3<x<2}

B.(几何证明选做题)如图,在△ABC中,DE∥BC,EF∥CD,若BC=3,DE=2,DF=1,则AB的长为
9
2
9
2

C.(坐标系与参数方程选做题)在已知极坐标系中,已知圆ρ=2cosθ与直线 3ρcosθ+4ρsinθ+a=0相切,则实数a=
2或8
2或8

查看答案和解析>>

同步练习册答案