精英家教网 > 高中数学 > 题目详情
函数f(x)=
x-5,x≥6
f(x+2),x<6
,则f(3)=(  )
分析:将f(3)利用递推关系式,逐步化为f(5),f(7),再利用分段函数第一段求解.
解答:解:由分段函数第二段解析式可知,f(3)=f(5),继而f(5)=f(7),
由分段函数第一段解析式f(7)=7-5=2,
所以f(3)=2.
故选:D.
点评:本题考查分段函数求函数值,要确定好自变量的取值或范围,再代入相应的解析式求得对应的函数值.分段函数分段处理,这是研究分段函数图象和性质最核心的理念.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(sin
ωx
2
,1),
n
=(
3
Acos
ωx
2
A
2
cosωx)(A>0,ω>0)
,函数f(x)=
m
n
的最大值为6,最小正周期为π.
(1)求A,ω的值;
(2)将函数y=f(x)的图象向左平移
π
12
个单位,再向上平移1个单位,得到函数y=g(x)的图象.求g(x)在[0,
6
]
上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)
的最小值,并确定取得最小值时x的值.
列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.002 4.04 4.3 5 5.8 7.57
请观察表中y值随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y最小=
4
4

证明:函数f(x)=x+
4
x
(x>0)
在区间(0,2)递减.
思考:
(1)函数f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
(2)函数f(x)=x+
k
x
(x>0,k>0)时有最值吗?
是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

科目:高中数学 来源:福建省高考真题 题型:解答题

已知函数f(x)=|x-a|,
(Ⅰ)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(Ⅱ)在(Ⅰ)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围。

查看答案和解析>>

科目:高中数学 来源:2011年四川省绵阳市高考数学二模试卷(理科)(解析版) 题型:选择题

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A.[-5,5]
B.[-]
C.[-]
D.[-]

查看答案和解析>>

科目:高中数学 来源:2011年四川省绵阳市高考数学二模试卷(文科)(解析版) 题型:选择题

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
A.[-5,5]
B.[-]
C.[-]
D.[-]

查看答案和解析>>

同步练习册答案