精英家教网 > 高中数学 > 题目详情

定义在R上的奇函数f(x)与偶函数g(x)满足f(x)+g(x)=ax-a-x+2,其中a>0且a≠1,若数学公式,则f(-1)=________.


分析:由已知中定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2根,据函数奇偶性的性质,得到关于f(x),g(x)的另一个方程f(-x)+g(-x)=a-x-ax+2,并由此求出f(x),g(x)的解析式,再根据g(2012)=a求出a值后,即可得到f(-1)的值.
解答:∵f(x)是定义在R上的奇函数,g(x)是定义在R上的偶函数
∴f(-x)=-f(x),g(-x)=g(x)
∵f(x)+g(x)=ax-a-x+2 ①
∴f(-x)+g(-x)=-f(x)+g(x)=a-x-ax+2 ②
①②联立解得f(x)=ax-a-x,g(x)=2
由已知g(2012)=a=2
∴a=4,f(x)=4x-4-x
∴f(-1)==-
故答案为:-
点评:本题考查的知识点是函数解析式的求法--方程组法,函数奇偶性的性质,其中利用奇偶性的性质,求出f(x),g(x)的解析式,再根据g(2012)=a求出a值,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案