精英家教网 > 高中数学 > 题目详情

不等式①a2+2>2a,②a2+b2≥2(a-b-1),③a2+b2>ab恒成立的个数是

[  ]

A.0

B.1

C.2

D.3

答案:C
解析:

①a2+2-2a=(a-1)2+1>0,②a2+b2-2(a-b-1)=a2-2a+b2+2b+2=(a-1)2+(b-1)2≥0,而③中a=b=0不成立.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①命题“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
②若a、b∈[0,1],则不等式a2+b2
1
4
成立的概率是
π
16

③线性相关系数r的值越大,表明两个变量的线性相关程度越强;
④函数y=x2-ax+1在[2,+∞)上恒为正,则实数a的取值范围是(-∞,
5
2
).
其中真命题的序号是
 
(请填上所有真命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3(ax+b)图象过点A(2,1)和B(5,2),设an=3f(n),n∈N*
(Ⅰ)求函数f(x)的解析式及数列{an}的通项公式;
(Ⅱ)求使不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)≥a
2n+1
对一切n∈N*均成立的最大实数a;
(Ⅲ)对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,记为{bn},设Tn是数列{bn}的前n项和,试问是否存在正整数m,使Tm=2008?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对任意x∈R,不等式a2-4a-|2-x|-|3+x|≤0恒成立,则实数a的取值范围是
-1≤a≤5
-1≤a≤5

查看答案和解析>>

科目:高中数学 来源:2006-2007学年广东省阳江市高三(上)期末数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=log3(ax+b)图象过点A(2,1)和B(5,2),设an=3f(n),n∈N*
(Ⅰ)求函数f(x)的解析式及数列{an}的通项公式;
(Ⅱ)求使不等式对一切n∈N*均成立的最大实数a;
(Ⅲ)对每一个k∈N*,在ak与ak+1之间插入2k-1个2,得到新数列:a1,2,a2,2,2,a3,2,2,2,2,a4,…,记为{bn},设Tn是数列{bn}的前n项和,试问是否存在正整数m,使Tm=2008?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案