精英家教网 > 高中数学 > 题目详情
1.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒,若一名行人来到该路口遇到红灯,则等待的时间不超过15秒就出现绿灯的概率为(  )
A.$\frac{7}{10}$B.$\frac{5}{8}$C.$\frac{3}{8}$D.$\frac{3}{10}$

分析 求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率,从而求出等待的时间不超过15秒就出现绿灯的概率.

解答 解:∵红灯持续时间为40秒,至少需要等待15秒才出现绿灯,
∴一名行人前25秒来到该路口遇到红灯,
∴至少需要等待15秒才出现绿灯的概率为 $\frac{25}{40}$=$\frac{5}{8}$,
故等待的时间不超过15秒就出现绿灯的概率p=1-$\frac{5}{8}$=$\frac{3}{8}$,
故选:C.

点评 本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.图1为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.

(1)图2方框内已给出了该几何体的俯视图,请在方框内画出该几何体的正(主)视图和侧(左)视图;
(2)求证:BE∥平面PDA.
(3)求四棱锥B-CEPD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在等比数列{an}中,公比q≠1,等差数列{bn}满足b1=a1=3,b4=a2,b13=a3
(I)求数列{an}与{bn}的通项公式;
(II)记cn=(-1)nbn+an,求数列{cn}的前2n项和S2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在三棱锥A-BCD中,E是AC中点,F在AD上,且2AF=FD,若三棱锥A-BEF的体积是1,则四棱锥B-ECDF的体积为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图所示,在边长为4的正方形纸片ABCD中,AC与BD相交于O,剪去△AOB,将剩余部分沿OC、OD折叠,使OA、OB重合,则以A(B)、C、D、O为顶点的四面体的外接球表面积为(  )
A.20πB.24πC.16πD.18π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=ex+ln(x+1)的图象在(0,f(0))处的切线与直线x-ny+4=0垂直,则n的值为(  )
A.$\frac{1}{2}$B.2C.-$\frac{1}{2}$D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数y=f(x)是定义在R+上的函数,并且满足下面三个条件:(1)对任意正数x、y,都有f(xy)=f(x)+f(y);(2)当x>1时,f(x)<0;(3)f(3)=-1,
(1)求f(1)、$f(\frac{1}{9})$的值;
(2)判断函数的单调性并证明
(3)如果不等式f(x)+f(2-x)<2成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在数列{an}中,若存在非零实数T,使得${a_{n+T}}={a_n}({N∈{n^*}})$成立,则称数列{an}是以T为周期的周期数列.若数列{bn}满足bn+1=|bn-bn-1|,且b1=1,b2=a(a≠0),则当数列{bn}的周期最小时,其前2017项的和为(  )
A.672B.673C.1345D.3025

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,若|AB|=4,则C的实轴长为(  )
A.4B.2C.4$\sqrt{3}$D.8

查看答案和解析>>

同步练习册答案