精英家教网 > 高中数学 > 题目详情
19.若(1+i)+(2-3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于(  )
A.3,-2B.3,2C.3,-3D.-1,4

分析 由复数的加法运算化简等式左边,然后由实部等于实部,虚部等于虚部求得a,b的值.

解答 解:由(1+i)+(2-3i)=3-2i=a+bi,
得a=3,b=-2.
故选:A.

点评 本题考查复数的加法运算及复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8名运动员中随机选择4人参加比赛.
(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;
(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年份20102011201220132014
时间代号t12345
储蓄存款y(千亿元)567810
(Ⅰ)求y关于t的回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$.
(Ⅱ)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.
附:回归方程$\widehat{y}$=$\widehat{b}$t+$\widehat{a}$中
$\left\{\begin{array}{l}{b=\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}=\frac{\sum_{i=1}^{n}{t}_{i}{y}_{i}-n\overline{t}\overline{y}}{\sum_{i=1}^{n}{t}_{i}^{2}-n{\overline{t}}^{2}}}\\{a=\overline{y}-b\overline{t}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;
(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.△ABC的内角A,B,C所对的边分别为a,b,c.向量$\overrightarrow{m}$=(a,$\sqrt{3}$b)与$\overrightarrow{n}$=(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,b=2,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若sinα=-$\frac{5}{13}$,则α为第四象限角,则tanα的值等于(  )
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为25.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$\overrightarrow{AB}⊥\overrightarrow{AC},|{\overrightarrow{AB}}|=\frac{1}{t},|{\overrightarrow{AC}}|=t$,若P点是△ABC所在平面内一点,且$\overrightarrow{AP}=\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}+\frac{{4\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$,则$\overrightarrow{PB}•\overrightarrow{PC}$的最大值等于(  )
A.13B.15C.19D.21

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2$\sqrt{5}$,AA1=$\sqrt{7}$,BB1=2$\sqrt{7}$,点E和F分别为BC和A1C的中点.
(Ⅰ)求证:EF∥平面A1B1BA;
(Ⅱ)求证:平面AEA1⊥平面BCB1
(Ⅲ)求直线A1B1与平面BCB1所成角的大小.

查看答案和解析>>

同步练习册答案