精英家教网 > 高中数学 > 题目详情
若函数f(x)=|2x+1|-|x-4|,则不等式f(x)>2的解为
 
分析:根据绝对值的代数意义,去掉函数f(x)=|2x+1|-|x-4|中的绝对值符号,求解不等式f(x)>2即可.
解答:解:f(x)=
-x-5(x<-
1
2
)
3x-3(-
1
2
≤x≤4)
x+5(x>4)

(1)①由
-x-5>2
x<-
1
2
,解得x<-7;
3x-3>2
-
1
2
≤x≤4
,解得
5
3
<x≤4;
x+5>2
x>4
,解得x>4;
综上可知不等式的解集为{x|x<-7或x>
5
3
}.
故答案为:(-∞,-7)∪(
5
3
,+∞).
点评:考查了绝对值的代数意义,去绝对值体现了分类讨论的数学思想,解答的关键是运用分类讨论去掉绝对值后转化成整式不等式.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、若函数f(x)=2-|x-1|-m的图象与x轴有交点,则实数m的取值范围是
0<m≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•延安模拟)若函数f(x)=2+sin2ωx(ω>0)的最小正周期与函数g(x)=tan
x
2
的最小正周期相等,则正实数ω的值为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区一模)把下面不完整的命题补充完整,并使之成为真命题,若函数f(x)=2+log3x的图象与g(x)的图象关于
x轴
x轴
对称,则函数g(x)=
g(x)=-2-log3x
g(x)=-2-log3x
.(注:填上你认为可以成为真命题的一种答案即可)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2|x+7|-|3x-4|的最小值为2,求自变量x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=2-|x|-x2+a有两个不同的零点,则实数a的取值范围是(  )
A、[1,+∞)B、(1,+∞)C、[-1,+∞)D、(-1,+∞)

查看答案和解析>>

同步练习册答案