精英家教网 > 高中数学 > 题目详情
设f(n)=
n2,(n为奇数)
-n2,(n为偶数)
(n∈N+),若an=f(n)+f(n+1),则a1+a2+…+ak=______(k∈N+
∵an=f(n)+f(n+1),
∴由已知条件知,an=
n2-(n+1)2=-(2n+1)  , n是奇数
-n2+(n+1)2= 2n+1   , n是偶数

an=(-1)n•(2n+1),∴an+an+1=2(n是奇数).
当k为奇数时,a1+a2+…+ak=(a1+a2)+(a3+a4)+…+(ak-2+ak-1)+ak=2×
k-1
2
+(-2k-1)=-k-2.
当k为偶数时,a1+a2+…+ak=(a1+a2)+(a3+a4)+…+(ak-1+ak)=
k
2
=k.
综上可得 a1+a2+…+ak=
k,(k为偶数)
-k-2,(k为奇数)

故答案为
k,(k为偶数)
-k-2,(k为奇数)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•杭州一模)设f(n)=
n2,(n为奇数)
-n2,(n为偶数)
(n∈N+),若an=f(n)+f(n+1),则a1+a2+…+ak=
k,(k为偶数)
-k-2,(k为奇数)
k,(k为偶数)
-k-2,(k为奇数)
(k∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)已知数列{an}的前n项和为Sn,对任意n∈N*,有2an=Sn+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设f(n)=n2 (n∈N*),试比较Sn与f(n)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:宣城模拟 题型:解答题

已知数列{an}的前n项和为Sn,对任意n∈N*,有2an=Sn+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设f(n)=n2 (n∈N*),试比较Sn与f(n)的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

设f(n) =n2+n+41,n∈N*,计算:f(1),f(2), f(3),f(4),…,f(10)的值,同时作出归纳推理,并用n=40验证猜想是否正确。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省宣城市六校高三第三次联考数学试卷(理科)(解析版) 题型:解答题

已知数列{an}的前n项和为Sn,对任意n∈N*,有2an=Sn+n.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设f(n)=n2 (n∈N*),试比较Sn与f(n)的大小,并说明理由.

查看答案和解析>>

同步练习册答案