精英家教网 > 高中数学 > 题目详情

画出求a、b两数的最小公倍数的程序框图,并写出程序.

答案:
解析:

  解:程序框图如图所示.

  程序如下:


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某餐馆一天中要购买A,B两种蔬菜,A、B蔬菜每斤的单价分别为2元和3 元.根据需要,A蔬菜至少要买6斤,B蔬菜至少要买4斤,而且一天中购买这两种蔬菜的总费用不能超过60元.
(1)写出一天中A蔬菜购买的斤数x和B蔬菜购买的斤数y之间的不等式组;
(2)在下面给定的坐标系中画出(1)中不等式组表示的平面区域(用阴影表示),并求 z=2x-y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

要将甲、乙两种大小不同的钢板截成A、B两种规格,每张钢板可同时截得A、B两种规格的小钢板的块数如下表所示:

规格类型

钢板类型

A

B

2

1

1

3

已知库房中现有甲、乙两种钢板的数量分别为5张和10张,市场急需A、B两种规格的成品数分别为15块和27块.

(1)问各截这两种钢板多少张可得到所需的成品数,且使所用的两张钢板的总张数最少?

(2)有5个同学对线性规划知识了解不多,但是画出了可行域,他们每个人都在可行域的整点中随意取出一解,求恰好有2个人取到最优解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

要将甲、乙两种大小不同的钢板截成A、B两种规格,每张钢板可同时截得A、B两种规格的小钢板的块数如下表所示:

规格类型

钢板类型

A

B

2

1

1

3

已知库房中现有甲、乙两种钢板的数量分别为5张和10张,市场急需A、B两种规格的成品数分别为15块和27块.

(1)问各截这两种钢板多少张可得到所需的成品数,且使所用的两张钢板的总张数最少?

(2)有5个同学对线性规划知识了解不多,但是画出了可行域,他们每个人都在可行域的整点中随意取出一解,求恰好有2个人取到最优解的概率.

查看答案和解析>>

同步练习册答案