精英家教网 > 高中数学 > 题目详情

已知是椭圆在第一象限内部分上的一点,求面积的最大值。

        

解:

                  

                   过A、B的直线方程是

                  

                  

                  

                  

                  

                           

                  

                  


解析:

已知椭圆的方程求最值或求范围,要用不等式的均值定理,或判别式来求解。(圆中用直径性质或弦心距)。要有耐心,处理好复杂运算。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆两焦点F1、F2在y轴上,短轴长为2
2
,离心率为
2
2
,P是椭圆在第一象限弧上一点,且
PF1
PF2
=1
,过P作关于直线F1P对称的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证直线AB的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
2
+
y2
4
=1
两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足
PF1
PF2
=1,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求直线AB的斜率;
(3)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
2
+
y2
4
=1
两焦点分别为F1、F2,P是椭圆在第一象限弧上一点,并满足
PF1
PF2
=1
,过P作倾斜角互补的两条直线PA、PB分别交椭圆于A、B两点.
(1)求P点坐标;
(2)求证:直线AB的斜率为定值;
(3)求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
4
+
y2
2
=1
的两焦点分别为F1,F2,P是椭圆在第一象限内的一点,并满足
PF1
PF2
=1
,过P作倾斜角互补的两条直线PA,PB分别交椭圆于A,B两点.
(Ⅰ)求P点坐标;
(Ⅱ)当直线PA经过点(1,
2
)时,求直线AB的方程;
(Ⅲ)求证直线AB的斜率为定值.

查看答案和解析>>

同步练习册答案