精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a、b、c.已知a+b=5,c=
7
,且4sin2
A+B
2
-cos2C=
7
2

(1)求角C的大小;
(2)求△ABC的面积.
(1)∵A+B+C=180°,
A+B
2
=90°-
C
2

4sin2
A+B
2
-cos2C=
7
2
得:4cos2
C
2
-cos2C=
7
2

4•
1+cosC
2
-(2cos2C-1)=
7
2

整理得:4cos2C-4cosC+1=0,
解得:cosC=
1
2

∵0°<C<180°,
∴C=60°;
(2)由余弦定理得:c2=a2+b2-2abcosC,即7=a2+b2-ab,
∴7=(a+b)2-3ab=25-3ab?ab=6,
S△ABC=
1
2
absinC=
1
2
×6×
3
2
=
3
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案