精英家教网 > 高中数学 > 题目详情
1.函数f(x)=$\frac{{e}^{2x}-1}{{e}^{2x}+1}$的图象关于(  )
A.坐标原点对称B.x轴对称C.y轴对称D.直线y=x

分析 根据奇函数的定义即可判断.

解答 解:∵f(x)=$\frac{{e}^{2x}-1}{{e}^{2x}+1}$,
∴f(-x)=$\frac{{e}^{-2x}-1}{{e}^{-2x}+1}$=-$\frac{{e}^{2x}-1}{{e}^{2x}+1}$=-f(x),
∴函数f(x)为奇函数,
∴函数f(x)的图象关于原点对称,
故选:A.

点评 本题考查了函数的奇偶性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下对应数据:
x24568
y3040605070
$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$
(1)求y关于x的回归直线方程.
(2)预测广告费支出为10(单位:百万元)时,销售额为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线y=$\frac{ax}{x+2}$在点(-1,-a)处的切线方程为2x-y+b=0,则a+b=(  )
A.0B.2C.-4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知:命题p:函数f(x)=mx在(1,+∞)内单调增;命题q:函数g(x)=xm在(1,+∞)内单调增,命题p∨q与命题¬p两个命题一真一假.求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知函数f(2x-1)的定义域为[1,4],求函数f(2x)的定义域;
(2)求函数y=$\frac{1+4x+{x}^{2}}{1+{x}^{2}}$(x>0)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c是互不相等的非零实数,函数f(x)=$\frac{a}{3}{x^3}+b{x^2}$+cx,g(x)=$\frac{b}{3}{x^3}+c{x^2}$+ax,h(x)=$\frac{c}{3}{x^3}+a{x^2}$+bx.利用反证法证明:f(x),g(x),h(x)这三个函数中,至少有一个函数存在极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某初级中学有学生270人,其中七年级108人,八、九年级各81人.现要利用抽样方法抽取10人参加某项调查,考虑用简单随机抽样、分层抽样和系统抽样三种方案.使用简单随机抽样和分层抽样时,学生按照七、八、九年级依次统一编号为1、2、3、…、270;使用系统抽样时,将学生统一随机编号为1、2、3、…、270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:
①7、34、61、88、115、142、169、196、223、250
②5、9、100、107、111、121、180、190、200、265
③11、38、65、92、119、146、173、200、227、254
④30、57、84、111、138、165、192、219、246、270
关于上述样本的下列结论中,正确的是(  )
A.②③都不能为系统抽样B.②④都不能为分层抽样
C.①④都可能为系统抽样D.①③都可能为分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥平面ABC,且D,E分别是棱A1B1,A1A1的中点,点F在棱AB上,且AF=$\frac{1}{4}$AB.
(1)求证:EF∥平面BDC1
(2)求三棱锥D-BEC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D、E分别为棱CC1、B1C1的中点,
(1)求A1B与平面ACC1A1所成角的正弦值;
(2)在线段AC上是否存在一点P,使得PE⊥平面A1BD?若存在,确定点P的位置;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案