精英家教网 > 高中数学 > 题目详情

已知椭圆C:的离心率为,其左、右焦点分别为F1、F2,点P是椭圆上一点,且,|OP|=1(O为坐标原点).

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点S(0,-)且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.

答案:
解析:

  解:(Ⅰ)因为,所以. 2分

  ∵,∴,∴

  又∵,∴

  ∴b=1.因此所求椭圆的方程为: 4分

  (Ⅱ)动直线的方程为:

  由

  设

  则 8分

  假设在y轴上存在定点M(0,m),满足题设,则

  

   12分

  由假设得对于任意的恒成立,

  即

  解得m=1.

  因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点,

  点M的坐标为(0,1). 14分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:的离心率为,双曲线x²-y²=1的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆c的方程为

查看答案和解析>>

科目:高中数学 来源:2009年广东省广州市高考数学二模试卷(文科)(解析版) 题型:解答题

已知椭圆C:的离心率为,且经过点
(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年重庆市七区高三第一次调研测试数学理卷 题型:选择题

已知椭圆C:的离心率为,过右焦点且斜率为的直线与椭圆C相交于两点.若,则 =(      )

A.         B.                  C.2            D.

 

查看答案和解析>>

科目:高中数学 来源:2013届广东省高二第一学期期末考试文科数学 题型:解答题

(本小题满分12分)

已知椭圆C:,它的离心率为.直线与以原点为圆心,以C的短半轴为半径的圆O相切. 求椭圆C的方程.

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011年吉林一中高二下学期第一次月考数学文卷 题型:解答题

.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.

 

查看答案和解析>>

同步练习册答案