分析 设直线方程为$\frac{x}{a}$+$\frac{y}{a}$=1或$\frac{x}{a}$-$\frac{y}{a}$=1,把点(3,2)代入直线方程解a可得.
解答 解:由题意设直线方程为$\frac{x}{a}$+$\frac{y}{a}$=1或$\frac{x}{a}$-$\frac{y}{a}$=1,把点(3,2)代入直线方程得$\frac{3}{a}$+$\frac{2}{a}$=1或得$\frac{3}{a}$-$\frac{2}{a}$=1
解得a=1,或a=5,
所以所求的直线为:x-y-1=0或x+y-5=0
故答案为:x-y-1=0或x+y-5=0.
点评 本题考查用截距式求直线的方程,体现了分类讨论的数学思想,设出直线方程是解决问题的关键,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 19 | C. | 20 | D. | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ¬p:?x∈(0,+∞),3x-cosx≤0 | B. | ¬p:?x∈(0,+∞),3x-cosx<0 | ||
| C. | ¬p:?x∈(-∞,0],3x-cosx≤0 | D. | ¬p是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 函数f(x)在区间$(0,\frac{2}{3}π)$上单调递增 | |
| B. | 直线$x=\frac{π}{8}$是函数y=f(x)图象的一条对称轴 | |
| C. | 点$(\frac{π}{4},0)$是函数y=f(x)图象的一个对称中心 | |
| D. | 将函数y=f(x)的图象向左平移$\frac{π}{8}$个单位,可得到$y=\sqrt{2}sin2x$的图象 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{11}{6}$ | C. | $\frac{11}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com