精英家教网 > 高中数学 > 题目详情

已知数列的前项和为,且满足.

(1)求数列的通项公式;

(2)求证数列中不存在任意三项按原来顺序成等差数列;

(3)若从数列中依次抽取一个无限多项的等比数列,使它的所有项和满足,这样的等比数列有多少个?

解:(1)当时,,则.

        又,两式相减得

        是首项为1,公比为的等比数列,

        --------------------------------------------------------4分

      (2)反证法:假设存在三项按原来顺序成等差数列,记为

          则

          (*)    又   

          *式左边是偶数,右边是奇数,等式不成立

          假设不成立       原命题得证. ------------------------------------------------8分

       (3)设抽取的等比数列首项为,公比为,项数为

            且满足

             则     又

                  整理得:  ①

                          

            

                        

            

                    将代入①式整理得  

             经验证得不满足题意,满足题意.

             综上可得满足题意的等比数列有两个. -------------------------------------16分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)

已知数列的前项和为,若

(Ⅰ)求证是等差数列,并求出的表达式;

(Ⅱ) 若,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列的前项和为,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?

查看答案和解析>>

科目:高中数学 来源:2011届福建省龙岩市高三上学期期末考试数学理卷(非一级校) 题型:解答题

(本题满分13分)
已知数列的前项和为,满足.
(Ⅰ)证明:数列为等比数列,并求出
(Ⅱ)设,求的最大项.

查看答案和解析>>

科目:高中数学 来源:2011年四川省泸县二中高2013届春期重点班第一学月考试数学试题 题型:解答题

(本小题14分)已知数列{}的前项和为,且=);=3
),
(1)写出;
(2)求数列{},{}的通项公式
(3)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:2015届广东省高一下学期期中数学试卷(解析版) 题型:解答题

已知数列的前项和为,且

(1)求数列的通项公式;

(2)令,数列的前项和为,若不等式 对任意恒成立,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案