精英家教网 > 高中数学 > 题目详情

已知椭圆C的方程为:,直线,直线,过椭圆C的右焦点F作直线l,使ll1ll2=P.

(Ⅰ)若l1l2的夹角为60°,双曲线E以l1l2为渐近线,且双曲线E的焦距为4,求双曲线E的方程;

(Ⅱ)若直线l与椭圆C的两个交点为A、B,且A在线段PF上,求的最大值.

答案:
解析:

  (Ⅰ)

  设双曲线E为:(λ≠0)          2分

  由

  ∴双曲线E为:          4分;

  (Ⅱ)设F(c,0),

  由     6分

  过A作AQ⊥直线于Q点,则

  ,由        8分

  而  ∴

  设,则   10分

  令    12分

  ≤         14分

  解法二:设F(c,0),A(x0,y0),    3分

  ∴代入椭圆方程得:  6分

  

  ∴              10分


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
+
y2
b2
=1(a≥2b>0)

(1)求椭圆C的离心率的取值范围;
(2)若椭圆C与椭圆2x2+5y2=50有相同的焦点,且过点M(4,1),求椭圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x2
a2
y2
b2
=1
(a>b>0),称圆心在坐标原点O,半径为
a2+b2
的圆为椭圆C的“伴随圆”,椭圆C的短轴长为2,离心率为
6
3

(Ⅰ)求椭圆C及其“伴随圆”的方程;
(Ⅱ)若直线l与椭圆C交于A,B两点,与其“伴随圆”交于C,D两点,当|CD|=
13
 时,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知椭圆C的方程为:
x2
a2
+
y2
2
=1 (a>0)
,其焦点在x轴上,离心率e=
2
2

(1)求该椭圆的标准方程;
(2)设动点P(x0,y0)满足
OP
=
OM
+2
ON
,其中M,N是椭圆C上的点,直线OM与ON的斜率之积为-
1
2
,求证:x02+2
y
2
0
为定值.
(3)在(2)的条件下,问:是否存在两个定点A,B,使得|PA|+|PB|为定值?若存在,给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•衡阳模拟)已知椭圆C的方程为
y2
a2
+
x2
b2
=1(a>b>0),离心率e=
2
2
,上焦点到直线y=
a2
c
的距离为
2
2
,直线l与y轴交于一点P(0,m),与椭圆C交于相异两点A,B且
AP
=t
PB

(1)求椭圆C的方程;
(2)若
OA
+t
OB
=4
OP
,求m的取值范围•

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的方程为
x 2
4
+
y2
3
=1,过C的右焦点F的直线与C相交于A、B两点,向量
m
=(-1,-4),若向量
OA
-
OB
m
-
OF
共线,则直线AB的方程是(  )

查看答案和解析>>

同步练习册答案