精英家教网 > 高中数学 > 题目详情

已知函数fx)是定义在R上的偶函数,且fx)的图象关于直线x =2对称.

(Ⅰ)证明:fx+4)= fx);

(Ⅱ)当x∈(4,6)时,fx)= .讨论函数fx)在区间(0,2)上的单调性.

解法一:(Ⅰ)设点Pxy)是函数y=fx)图象上任意一点,因为函数fx)的图象关于直线x=2对称,所以点Q(4-xy)也在该函数图象上.

所以fx)=f(4-x). 

因为函数fx)是偶函数,

所以f(-x)=fx),所以f(-x)=f(4-x),所以fx+4)= fx).

(Ⅱ)因为当x∈(4,6)时,fx)=

当0<x<2时,4<x+4<6,

由(Ⅰ)知fx) = fx+4)= =

=

0,得x=-3或x=l,因为0<x<2,所以x=1.

因为x∈(0,1)时,<0,x∈(1,2)时, >0,

所以函数以fx)在(0,1)内单调递减,在(1,2)内单调递增.

解法二:(Ⅰ)同解法一.

(Ⅱ)当4<x<6时, fx)= ,

=

    令fx)=0,得x=1或x=5.因为4<x<6,所以x=5.

    因为x∈(4,5)时,<0,x∈(5,6)时,>0.

    所以函数fx)在(4,5)内单调递减,在(5,6)内单调递增.

    因为fx+4)= fx),所以fx)是以4为周期的周期函数,

    所以函数fx)在(0,1)内单调递减,在(1,2)内单调递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案