C
分析:本题考查正态分布曲线的性质,随机变量ξ服从正态分布N(0,σ2),由此知曲线的对称轴为Y轴,|ξ|>2包括了两部分ξ>2或ξ<-2由此可得P(|ξ|>2)=1-P(-2≤ξ≤2),再由P(-2≤ξ≤0)=0.4,答案易.
解答:∵随机变量ξ服从正态分布N(0,σ2),且P(-2≤ξ≤0)=0.4,
∴P(-2≤ξ≤2)=0.8
∴P(|ξ|>2)=1-P(-2≤ξ≤2)=1-0.8=0.2
故选C
点评:本题考查正态分布曲线的重点及曲线所表示的意义,解题的关键是正确正态分布曲线的重点及曲线所表示的意义,由曲线的对称性求出概率,本题是一个数形结合的题,识图很重要.