精英家教网 > 高中数学 > 题目详情
(2012•盐城二模)选修4-5:不等式选讲:
设a1,a2,a3均为正数,且a1+a2+a3=m.求证:
1
a1+a2
+
1
a2+a3
+
1
a3+a1
9
2m
分析:利用基本不等式,结合a1+a2+a3=m,即可证得结论.
解答:证明:因为(
1
a1+a2
+
1
a2+a3
+
1
a3+a1
)
•[(a1+a2)+(a2+a3)+(a3+a1)]
 ≥3
3
1
a1+a2
1
a2+a3
1
a3+a1
3
3(a1+a2)•(a2+a3)•(a3+a1)
=9…6分
当且仅当a1=a2=a3=
m
3
时等号成立,
则由(
1
a1+a2
+
1
a2+a3
+
1
a3+a1
)
•2m≥9,知
1
a1+a2
+
1
a2+a3
+
1
a3+a1
9
2m
…10分
点评:本题考查不等式的证明,考查基本不等式的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•盐城二模)若命题“?x∈R,x2-ax+a≥0”为真命题,则实数a的取值范围是
[0,4]
[0,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)已知集合P={-1,m},Q={x|-1<x<
34
}
,若P∩Q≠∅,则整数m=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)设△ABC的内角A,B,C的对边长分别为a,b,c,且b2=
1
2
ac

(1)求证:cosB≥
3
4

(2)若cos(A-C)+cosB=1,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)已知函数f1(x)=e|x-2a+1|f2(x)=e|x-a|+1,x∈R
(1)若a=2,求f(x)=f1(x)+f2(x)在x∈[2,3]上的最小值;
(2)若x∈[a,+∞)时,f2(x)≥f1(x),求a的取值范围;
(3)求函数g(x)=
f1(x)+f2(x)
2
-
|f1(x)-f2(x)|
2
在x∈[1,6]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•盐城二模)设f(x)是定义在R上的可导函数,且满足f(x)+xf′(x)>0.则不等式f(
x+1
)>
x-1
f(
x2-1
)
的解集为
{x|1≤x<2}
{x|1≤x<2}

查看答案和解析>>

同步练习册答案