精英家教网 > 高中数学 > 题目详情

已知函数)。

(1)若,求证:上是增函数;

(2)求上的最小值。

 

【答案】

(1)见解析;(2).

【解析】

试题分析:(1)求导数,证明当时,.

(2)应用导数研究函数的最值,往往通过“求导数,求驻点,确定极值,计算区间端点函数值,比较大小”等,使问题得解.本题含有参数,因此,要注意根据导数的正负零情况,加以讨论.

试题解析: (1)时,

,当时,

上是增函数。

(2)

①当时,因为,所以,上单调递增,故

②当时,由单调递减,单调递增,故

③当时,∵,则上单调递减,

考点:应用导数研究函数的单调性、最值.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=ax3+bx2+6x+1的递增区间为(-2,3),则a,b的值分别为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
2x
+1-alnx
,a>0,
(1)讨论f(x)的单调性;
(2)设a=3,求f(x)在区间[1,e2]上值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a
1-x2
+
1+x
+
1-x
的最大值为g(a).
(1)设t=
1+x
+
1-x
,求t的取值范围;
(2)求g(a).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:函数f(x)在R上为增函数;
(2)当函数f(x)为奇函数时,求a的值;
(3)当函数f(x)为奇函数时,求函数f(x)在[-1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x(x+1),x≥0
x(1-x),x<0
,则f(0)=
 

查看答案和解析>>

同步练习册答案