精英家教网 > 高中数学 > 题目详情
函数y=
1-x2
的定义域为
 
分析:令被开方数大于等于0,解不等式求出定义域.
解答:解:要使函数有意义,需满足
1-x2≥0
解得-1≤x≤1
故答案为{x|-1≤x≤1}
点评:求函数的定义域,也不从开偶次方根的被开方数大于等于0;分母非0;对数函数的真数大于0底数大于0且不等于1等方面限制.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列四种说法正确的是
 
 (把你认为正确说法的序号都填上).
①命题“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x、
②将函数y=sin(2x+
π
6
)
的图象向左平移
π
6
个单位,得到函数y=-cos2x的图象;
③若“?p”与“p∨q”都为真,则q-定为真;
④“0<a<1”是“loga(a+1)<loga(
1
a
+1)
”的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数y=f(x),有下列命题:
①若a∈[-2,2],则函数f(x)=
x2+ax+1
的定域为R;
②若f(x)=log
1
2
(x2-3x+2)
,则f(x)的单调增区间为(-∞,
3
2
)

③(理)若f(x)=
1
x2-x-2
,则
lim
x→2
[(x-2)f(x)]=0

(文)若f(x)=
1
x2-x-2
,则值域是(-∞,0)∪(0,+∞)
④定义在R的函数f(x),且对任意的x∈R都有:f(-x)=-f(x),f(1+x)=f(1-x),则4是y=f(x)的一个周期.
其中真命题的编号是
 
.(文理相同)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
4x+2
(x∈R)
,P1(x1,y1)、P2(x2,y2)是函数y=f(x)图象上两点,且线段P1P2中点P的横坐标是
1
2

(1)求证点P的纵坐标是定值; 
(2)若数列{an}的通项公式是an=f(
n
m
)
(m∈N*),n=1,2…m),求数列{an}的前m项和Sm; 
(3)在(2)的条件下,若m∈N*时,不等式
am
Sm
am+1
Sm+1
恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省济宁一中高三(上)期末数学试卷(理科)(解析版) 题型:填空题

下列四种说法正确的是     (把你认为正确说法的序号都填上).
①命题“?x∈R,x2+1>3x“的否定是“?x∈R,x2+1≤3x、
②将函数的图象向左平移个单位,得到函数y=-cos2x的图象;
③若“¬p”与“p∨q”都为真,则q-定为真;
④“0<a<1”是“”的充分条件.

查看答案和解析>>

科目:高中数学 来源:2012年江苏省常州中学高考冲刺复习单元卷:函数与数列2(解析版) 题型:解答题

已知,P1(x1,y1)、P2(x2,y2)是函数y=f(x)图象上两点,且线段P1P2中点P的横坐标是
(1)求证点P的纵坐标是定值; 
(2)若数列{an}的通项公式是(m∈N*),n=1,2…m),求数列{an}的前m项和Sm; 
(3)在(2)的条件下,若m∈N*时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案