精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
-x,x∈[-1,0)
1
f(x-1)
-1,
x∈[0,1)
,若方程f(x)-kx+k=0有两个实数根,则k的取值范围是(  )
分析:求出函数f(x)的表达式,由f(x)-kx+k=0得f(x)=kx-k,然后分别作出y=f(x)和y=kx-k的图象,利用图象确定k的取值范围.
解答:解:当0≤x<1时,-1≤x-1<0,
所以f(x)=
1
f(x-1)
-1=
1
-(x-1)
-1

由f(x)-kx+k=0得f(x)=kx-k,分别作出y=f(x)和y=kx-k=k(x-1)的图象,如图:
由图象可知当直线y=kx-k经过点A(-1,1)时,两曲线有两个交点,又直线y=k(x-1)过定点B(1,0),
所以过A,B两点的直线斜率k=-
1
2

所以要使方程f(x)-kx+k=0有两个实数根,
-
1
2
≤k<0.
故选B.
点评:本题主要考查函数零点的应用,将方程转化为两个函数,利用数形结合,是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案