精英家教网 > 高中数学 > 题目详情
10.设g(x)=e2x+|ex-a|,x∈[0,ln3],其中a≤2$\sqrt{2}$.
(1)当a=1时,函数g(x)是否存在零点,若存在,求出所有零点,若不存在,说明理由.
(2)求函数g(x)的最小值.

分析 (1)由x∈[0,ln3],去掉绝对值,利用二次函数的性质解题.
(2)设t=ex,由x∈[0,ln3]则t∈[1,3],则m(t)=t2+|t-a|,讨论a,利用函数的单调性分别求出函数的最值即可.

解答 解:(1)∵x∈[0,ln3],所以ex≥1,∴g(x)=e2x+ex-1,ex∈[1,3],
解得:${e}^{x}=\frac{-1±\sqrt{5}}{2}$,其中$\frac{-1+\sqrt{5}}{2}∈[1,3]$
故g(x)有一个零点,为$ln\frac{-1+\sqrt{5}}{2}$.
(2)设t=ex,由x∈[0,ln3],知t∈[1,3],则m(t)=t2+|t-a|
当a≤1时,m(t)=t2+t-a在[1,3]上是增函数,
∴m(t)min=m(1)=2-a…(8分)
当1<a≤2时,m(t)=$\left\{\begin{array}{l}{{t}^{2}-t+a}&{1≤t≤a}\\{{t}^{2}+t-a}&{a<t≤3}\end{array}\right.$
∵m(t)在[a,3]上是增函数,在[1,a]上也是增函数,又m(t)在[1,3]上是连续函数,
∴m(t)在[1,3]上是增函数,
∴m(t)min=m(1)=a;
综上所述:h(x)min=$\left\{\begin{array}{l}{2-a}&{a≤1}\\{a}&{1<a≤2\sqrt{2}}\end{array}\right.$.

点评 本题主要考查了利用零点的求法和二次函数的最值的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知圆O:x2+y2=2.
(1)求与圆O相切且与直线x+2y=0垂直的直线方程;
(2)若EF,GH为圆O:x2+y2=2的两条互相垂直的弦,垂足为M(1,$\frac{\sqrt{2}}{2}$),求四边形EFGH的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知$\overrightarrow{a}$=(2,-3),$\overrightarrow{b}$=($\frac{3}{2}$,1),$\overrightarrow{c}$=(-5,6),则-2$\overrightarrow{a}$+3$\overrightarrow{b}$-5$\overrightarrow{c}$=$(\frac{51}{2},-21)$,$\overrightarrow{a}$,$\overrightarrow{b}$的位置关系为$\overrightarrow{a}⊥\overrightarrow{b}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知集合A={x|x=a2+1,a∈R},B={x|x=b2-4b+5,b∈R},则A与B的关系为A=B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.二项式(x+$\frac{a}{x}$)n(n∈N*)的展开式中只有第四项的二项式系数最大,且常数项为-160,则${∫}_{a}^{2}$(x2+sinx)dx的值为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.对于任意x∈[-2,1]时,不等式mx3-x2+4x+3≥0恒成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.分解因式:x2+x-(a2-a)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若x,y满足约束条件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≥0}\\{y≥0}\end{array}\right.$,则z=x-2y的最小值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的三个顶点ABC及所在平面内一点,P满足$\overrightarrow{PA}$+$\overrightarrow{PB}$+2$\overrightarrow{PC}$=$\overrightarrow{CB}$,则点P与△ABC的关系为(  )
A.P在△ABC内部B.P在AB边所在直线上
C.P在BC边所在直线上D.P在AC边所在直线上

查看答案和解析>>

同步练习册答案