分析 (1)化简可得$\frac{{{a_{n+1}}}}{n+1}=\frac{a_n}{n}+1$,从而证明$\left\{{\frac{a_n}{n}}\right\}$是以1为首项,1为公差的等差数列,从而求得.
(2)利用(1)中所求得的数列{an}的通项公式得到${b_n}=n•{3^n}$,然后由错位相减法求得数列{bn}的前n项和Sn.
解答 解:(1)由已知可得$\frac{{{a_{n+1}}}}{n+1}=\frac{a_n}{n}+1$,即$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=1$,
所以$\left\{{\frac{a_n}{n}}\right\}$是以$\frac{a_1}{1}=1$为首项,1为公差的等差数列,
所以$\frac{a_n}{n}=1+(n-1)•1=n$,即${a_n}={n^2}$.
(2)由(1)知${a_n}={n^2}$,从而${b_n}=n•{3^n}$,${S_n}=1•{3^1}+2•{3^2}+3•{3^3}+…+n•{3^n}$,①
$3{S_n}=1•{3^2}+2•{3^3}+…+(n-1)•{3^n}+n•{3^{n+1}}$,②
①-②得$-2{S_n}={3^2}+{3^3}+{3^4}+…+{3^n}-n•{3^{n+1}}$=$\frac{{3(1-{3^n})}}{1-3}-n•{3^{n+1}}=\frac{{(1-2n)•{3^{n+1}}-3}}{2}$,
所以${S_n}=\frac{{(2n-1)•{3^{n+1}}+3}}{4}$.
点评 本题考查了等差数列的判断与应用,同时考查了构造法和错位相减求和法的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3}{8}$,$\frac{11}{12}$]∪[$\frac{11}{8}$,$\frac{19}{12}$] | B. | ($\frac{1}{4}$,$\frac{5}{12}$]∪[$\frac{5}{8}$,$\frac{3}{4}$] | ||
| C. | [$\frac{3}{8}$,$\frac{7}{12}$]∪[$\frac{7}{8}$,$\frac{11}{12}$] | D. | ($\frac{1}{4}$,$\frac{3}{4}$]∪[$\frac{9}{8}$,$\frac{17}{12}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{4}{5})$ | B. | $(\frac{4}{5},+∞)$ | C. | $(\frac{4}{5},1)$ | D. | $(0,\frac{4}{5})∪(1,+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {3,5} | B. | {1,3,4,5,6,7,8} | C. | {2,8} | D. | {1,7} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com