精英家教网 > 高中数学 > 题目详情
关于x的不等式x的取值范围为:<x<1,求a、b之值.

解:原分式不等式与下列不等式同解(x-a)(x2-x+1)>(x-b)(x2+x+1),

整理得:(a-b+2)x2-(a+b)x+a-b<0      ①

由已知①的解集为{x|<x<1},故有(x-)(x-1)<0,

即2x2-3x+1<0.                   ②

比较①②的系数,它必满足

解得a=4,b=2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

三个同学对问题“关于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量x的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于x的函数,作出函数图象”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网A.(不等式选做题)若关于x的不等式|x+3|-|x+2|≥log2a有解,则实数a的取值范围是:
 

B.(几何证明选做题)如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若
PB
PA
=
1
2
PC
PD
=
1
3
,则
BC
AD
的值为
 

C.(坐标系与参数方程选做题)设曲线C的参数方程为
x=3+2
2
cosθ
y=-1+2
2
sinθ
(θ为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρ=
2
cosθ-sinθ
,则曲线C上到直线l距离为
2
的点的个数为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式|x-2|+|x-a|≥2a.?
(I)若a=1,求不等式的解集;?
(II)若不等式的解集为R,求实数a的取值范围.?

查看答案和解析>>

科目:高中数学 来源: 题型:

三个同学对问题“关于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路.

甲说:“只需不等式左边的最小值不小于右边的最大值.”

乙说:“把不等式变形为左边含变量x的函数,右边仅含常数,求函数的最值.”

丙说:“把不等式两边看成关于x的函数,作出函数图象.”

参考上述解题思路,你认为他们所讨论的问题的正确结论,即a的取值范围是__________.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年北京师大附中高三(上)9月段考数学试卷(理科)(解析版) 题型:填空题

三个同学对问题“关于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量x的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于x的函数,作出函数图象”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即a的取值范围是   

查看答案和解析>>

同步练习册答案