精英家教网 > 高中数学 > 题目详情
18.已知数列{an}为等比数列,前n项和为Sn,若a1<a2,a52=10,且3S1,2S2,S3成等差数列,则数列{an}的通项公式an=$\frac{\sqrt{10}}{81}$×3n-1

分析 利用等差数列与等比数列的通项公式即可得出.

解答 解:∵3S1、2S2、S3成等差数列,
∴4S2=3S1+S3,即4(a1+a1q)=3a1+a1+a1q+a1q2
∴q2-3q=0,
∵q≠0,∴q=3.
又∵a1<a2,a52=10,
∴a1=$\frac{\sqrt{10}}{81}$.
∴an=$\frac{\sqrt{10}}{81}$×3n-1
故答案为:$\frac{\sqrt{10}}{81}$×3n-1

点评 本题考查了等差数列与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设l是直线,a,β是两个不同的平面,则下列正确的是(  )
A.若l∥a,l∥β,则a∥βB.若α⊥β,l∥α,则l⊥βC.若α⊥β,l⊥α,则l⊥βD.若l∥α,l⊥β,则α⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=x2+x-2在x=1处的切线方程为3x-y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.随机变量$ξ~B(4,\frac{1}{3})$,则Dξ=$\frac{8}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a2sinC=3,cosC=$\frac{{a}^{2}+4{a}^{2}-9}{4{a}^{2}}$,求sinC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式|x+1|+|x-2|≤|2x-1|的解集为{x|x≤-1,或 x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=log2(|x-1|+|x-5|-a).
(Ⅰ)当a=5时,求函数f(x)的定义域;
(Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某单位为了了解用电量y度与气温x℃之间的关系随机统计了某4天的用电量与当天气温
气温(℃)141286
用电量22263438
(1)求用电量y与气温x之间的线性回归方程,
(2)由(1)的方程预测气温为5℃时,用电量的度数.
参考公式:$\begin{array}{l}b=\frac{{\sum_{i=1}^n{({x_i}-\overline x})({y_i}-\overline y)}}{{\sum_{i=1}^n{({x_i}-\overline x}{)^2}}}=\frac{{\sum_{i=1}^n{x_i}{y_i}-n\overline x\overline y}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}\\ \overline a=\overline y-b\overline x\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高二年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分下的学生后,共有男生300名,女生200名,现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]
39181569
64510132
(1)估计男、女生各自的平均分(同一组数据用该级区间中点值作代表),从计算结果看,数学成绩与性别是否有关;
(2)规定80分以上者为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.
 优分非优分合计
男生   
女生   
合计  100
P(K2≥k)0.1000.0500.0100.001
 k2.7063.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案