精英家教网 > 高中数学 > 题目详情
椭圆
x2
a2
+
y2
b2
=1
(a>b>0)与直线x+y=1交于P、Q两点,且OP⊥OQ,其中O为坐标原点.
(1)求
1
a2
+
1
b2
的值;
(2)若椭圆的离心率e满足
3
3
≤e≤
2
2
,求椭圆长轴的取值范围.
设P(x1,y1),Q(x2,y2)由OP⊥OQ 可得 x 12+y1 y 2=0(2分)
∵y1=1-x1,y2=1-x2
∴2x1x2-(x1+x2)+1=0①又将y=1-x代入
x2
a2
+
y2
b2
=1
可得(a2+b2)x2-2a2x+a2(1-b2)=0
∵△>0∴x1+x2=
2a2
a2+b2
x1x2=
a2(1-b2)
a2+b2
(4分)
代入①化简得 
1
a2
+
1
b2
=2
.(6分)
(2)∵e2=
c2
a2
=1- 
b2
a2

1
3
≤1-
b2
a2
1
2

1
2
b2
a2
2
3
(8分)
又由(1)知b2=
a2
2a2-1
   (9分)
1
2
1
2a2-1
2
3
5
2
≤a≤
6
2
,(11分)
∴长轴 2a∈[
5
6
].(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,求证:|AT|2=
1
2
|AF1||AF2|

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,椭圆
x2
a2
+
y2
b 
=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=
3
2

(Ⅰ)求椭圆方程;
(Ⅱ)设F1、F2分别为椭圆的左、右焦点,M为线段AF1的中点,求证:∠ATM=∠AF1T.

查看答案和解析>>

科目:高中数学 来源: 题型:

设 A(x1,y1)、B(x2,y2)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的两点,O为坐标原点,向量
m
=(
x1
a
y1
b
),
n
=(
x2
a
y2
b
)
m
n
=0

(1)若A点坐标为(a,0),求点B的坐标;
(2)设
OM
=cosθ•
OA
+sinθ•
OB
,证明点M在椭圆上;
(3)若点P、Q为椭圆 上的两点,且
PQ
OB
,试问:线段PQ能否被直线OA平分?若能平分,请加以证明;若不能平分,请说明理由.

查看答案和解析>>

科目:高中数学 来源:四川 题型:解答题

已知椭圆
x2
a2
+
y2
b
=1(a>b>0)
的左、右焦点分别为F1、F2,离心率e=
2
2
,右准线方程为x=2.
(1)求椭圆的标准方程;
(2)过点F1的直线l与该椭圆交于M、N两点,且|
F2M
+
F2N
|=
2
26
3
,求直线l的方程.

查看答案和解析>>

同步练习册答案