精英家教网 > 高中数学 > 题目详情
在数列{an}和{bn}中,a1=1,b1=2,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*),
(1)求a2,a3,a4和b2,b3,b4
(2)猜想{an},{bn}的通项公式,并证明你的结论;
(3)求证:(n∈N*)。
解:(1)
(2)猜想:
用数学归纳法证明:
(ⅰ)当n=1时,结论显然成立;
(ⅱ)假设n=k时结论成立,即
当n=k+1时,

所以当n=k+1时,结论也成立;
综合(ⅰ)(ⅱ)对任意n∈N*,都成立;
(3)欲证
即证
下面用数学归纳法证明:
(ⅰ)当n=1时,左=,不等式显然成立;
(ⅱ)假设n=k时结论成立,即
当n=k+1时,

所以

则n=k+1时不等式也成立;
综合(ⅰ)(ⅱ)对任意n∈N*,都有
亦即
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当a=2,b=
2
时,数列{bn}中的任意三项都不能构成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列{an}和{bn}中,数学公式,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当数学公式时,数列{bn}中的任意三项都不能构成等比数列.

查看答案和解析>>

科目:高中数学 来源:2011年北京市清华附中高三统练数学试卷6(理科)(解析版) 题型:解答题

在数列{an}和{bn}中,an=an,bn=(a+1)n+b,n=1,2,3,…,其中a≥2且a∈N*,b∈R.
(Ⅰ)若a1=b1,a2<b2,求数列{bn}的前n项和;
(Ⅱ)证明:当时,数列{bn}中的任意三项都不能构成等比数列;
(Ⅲ)设A={a1,a2,a3,…},B={b1,b2,b3,…},试问在区间[1,a]上是否存在实数b使得C=A∩B≠∅.若存在,求出b的一切可能的取值及相应的集合C;若不存在,试说明理由.

查看答案和解析>>

同步练习册答案