精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn-1=bn+(2n-1)( n∈N*).
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{bn}的通项公式bn
(Ⅲ)若cn=
anbn
n
,求数列{cn}的前n项和Tn
(Ⅰ)∵Sn=3n
∴Sn-1=3n-1(n≥2).
∴an=Sn-sn=3n-3n-1=2•3n-1(n≥2).
当n=1时,2•30=2≠S1=3,
an=
3,n=1
2•3n-1,n≥
2
       (4分)
(Ⅱ)∵bn+1=bn+(2n-1)
∴b2-b1=1,
b3-b2=3,
b4-b3=5,

bn-bn-1=2n-3,
以上各式相加得
bn-b1=1+3+5+…+(2n-3)=
(n-1)(2n-2)
2
=(n-1)2
∵b1=-1,∴bn=n2-2n.     (9分)
(Ⅲ)由题意得Cn=
-3,n=1
2(n-2)•
3n-1,(n≥2)

当n≥2时,
Tn=-3+2•0×3+2•1×32+…+2(n-2)×3n-13Tn=-9+2•0×32+2•1×33+2•2×34+…+2(n-2)×3n
相减得:-2Tn=(n-2)×3n-(3+32+33+…+3n-1
Tn=(n-2)×3n-(3+32+33+…+3n-1)=
(2n-5)•3n+3
2

Tn=
-3,n=1
(2n-5)•3n+3
2
,n≥2
=
(2n-5)•3n+3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案