精英家教网 > 高中数学 > 题目详情

已知椭圆的中心在坐标原点,离心率为数学公式,一个焦点是F(0,1).
(Ⅰ)求椭圆方程;
(Ⅱ)直线l过点F交椭圆于A、B两点,且数学公式,求直线l的方程.

解:(Ⅰ)设椭圆方程为(a>b>0).
依题意,e==,c=1,∴a=2,b2=a2-c2=3,
∴所求椭圆方程为
(Ⅱ)若直线l的斜率k不存在,则不满足
当直线l的斜率k存在时,设直线l的方程为y=kx+1.
因为直线l过椭圆的焦点F(0,1),所以k取任何实数,直线l与椭圆均有两个交点A、B.
设A(x1,y1),B(x2,y2),
联立方程消去y,得(3k2+4)x2+6kx-9=0.
∴x1+x2=,①x1•x2=,②
由F(0,1),A(x1,y1),B(x2,y2),

,∴(-x1,1-y1)=2(x2,y2-1),得x1=-2x2
将x1=-2x2代入①、②,得,③,④
由③、④得,,化简得=
解得,∴k=±
∴直线l的方程为:y=±x+1.
分析:(Ⅰ)设椭圆方程,确定几何量,即可得到椭圆方程;
(Ⅱ)分类讨论,设出直线方程与椭圆方程联立,利用韦达定理及向量条件,即可求得直线方程.
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查向量知识,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点.过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点.
(1)求椭圆的方程;
(2)当直线l的斜率为1时,求△POQ的面积;
(3)在线段OF上是否存在点M(m,0),使得以MP,MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,且经过点M(1,
2
5
5
)
,N(-2,
5
5
)
,若圆C的圆心与椭圆的右焦点重合,圆的半径恰好等于椭圆的短半轴长,已知点A(x,y)为圆C上的一点.
(1)求椭圆的标准方程和圆的标准方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O为坐标原点)的取值范围;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在x轴上,椭圆上点P(3
2
,4)
到两焦点的距离之和是12,则椭圆的标准方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点,焦点在x轴上,焦距为6
3
,且椭圆上一点到两个焦点的距离之和为12,则椭圆的方程为
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在坐标原点O,焦点在x轴上,离心率为
2
2
,坐标原点O到过右焦点F且斜率为1的直线的距离为
2
2

(1)求椭圆的方程;
(2)设过右焦点F且与坐标轴不垂直的直线l交椭圆于P、Q两点,在线段OF上是否存在点M(m,0),使得以MP、MQ为邻边的平行四边形是菱形?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案