精英家教网 > 高中数学 > 题目详情
16.在多面体ABCDEFG中,四边形ABCD与ADEF是边长均为a的正方形,四边形ABGH是直角梯形,AB⊥AF,且FA=2FG=4FH.
(1)求证:平面BCG⊥平面EHG;
(2)若a=4,求四棱锥G-BCEF的体积.

分析 (1)连接BH,推导出HG⊥GB,从而CB⊥平面ABGF,进而CB⊥HG,由此能证明HG⊥平面BCG,从而平面EHG⊥平面BCG.
(2)过B作AF的平行线交于FG的延长线于点P,连接AP、FB交于点O,过G作GK⊥FB于K,由此能求出四棱锥G-BCEF的体积.

解答 证明:(1)连接BH,由AH=$\frac{3}{4}a$,AB=a,
知:HB=$\sqrt{(\frac{3}{4}a)^{2}+{a}^{2}}$=$\frac{5}{4}a$,
HG=$\sqrt{(\frac{1}{4}a)^{2}+(\frac{1}{2}a)^{2}}$=$\frac{\sqrt{5}}{4}a$,
GB=$\sqrt{{a}^{2}+(\frac{1}{2}a)^{2}}$=$\frac{\sqrt{5}}{2}a$,
∴HB2=HG2+GB2,从而HG⊥GB,…(3分)
∵DA⊥AF,DA⊥AB,∴DA⊥平面ABGH,
又∵CB∥DA,∴CB⊥平面ABGF,
∴CB⊥HG,∴HG⊥平面BCG,
∵HG⊥平面EHG,∴平面EHG⊥平面BCG.…(6分)
解:(2)过B作AF的平行线交于FG的延长线于点P,
连接AP、FB交于点O,
过G作GK⊥FB于K,
则GK=$\frac{1}{2}$PO=$\frac{1}{2}×2\sqrt{2}=\sqrt{2}$,…(8分)
∴四边形BCEF的面积S=4×$4\sqrt{2}=16$,…(10分)
故VG-BCEF=$\frac{1}{3}×16\sqrt{2}×\sqrt{2}$=$\frac{32}{3}$.…(12分)

点评 本题考查面面垂直的证明,考查四棱锥的体积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某县城出租车的收费标准是:起步价是5元(乘车不超过3公里);行驶3公里后,每公里车费1.2元;行驶10公里后,每公里车费1.8元.
(1)写出车费与路程的关系式;
(2)一顾客行程30公里,为了省钱,他设计了三种乘车方案:
①不换车:乘一辆出租车行30公里
②分两段乘车:乘一车行15公里,换乘另一车再行15公里;
③分三段乘车:每乘10公里换一次车.
问哪一种方案最省钱.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x3+sinx,x∈(-1,1).如果f(1-a)+f(1-a2)<0,则a的取值范围是(  )
A.$(1,\sqrt{2})$B.(-∞,-2)∪(1,+∞)C.(-∞,-1)∪(2,+∞)D.$(0,\sqrt{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E为线段AB上一点,且AE:EB=7:2,点F,G,M分别为线段PA、PD、BC的中点.
(1)求证:PE⊥平面ABCD;
(2)若平面EFG与直线CD交于点N,求二面角P-MN-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a,b,c分别为△ABC三个内角A,B,C的对边,且acosC+$\sqrt{3}$asinC-b-c=0.
(1)求A;
(2)若AD为BC边上的中线,cosB=$\frac{1}{7}$,AD=$\frac{\sqrt{129}}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若集合M={x∈N|x2-8x+7<0},N={x|$\frac{x}{3}$∉N},则M∩N等于(  )
A.{3,6}B.{4,5}C.{2,4,5}D.{2,4,5,7}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的内角A,B,C的对边分别为a,b,c,已知a≠b,cos2A-cos2B=$\sqrt{3}sinAcosA-\sqrt{3}sinBcosB$
(Ⅰ)求角C的大小;
(Ⅱ)若$c=\sqrt{3}$,求△ABC的周长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果f(x)=ax2+bx+c,f(x)>0的解集为{x|x<-2或x>4},那么(  )
A.f(5)<f(2)<f(-1)B.f(2)<f(5)<f(-1)C.f(-1)<f(2)<f(5)D.f(2)<f(-1)<f(5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),且圆C′:x2+y2=1过椭圆C的上顶点和右焦点.
(1)求椭圆C的标准方程和离心率;
(2)已知直线l与椭圆C只有1个交点,探究:是否存在两个定点P(x1,0)、Q(x2,0),且x1<x2,使得P、Q到直线l的距离之积为1.如果存在,求出这两个定点的坐标;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案