精英家教网 > 高中数学 > 题目详情
已知数集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),aiaj两数中至少有一个属于A,
(Ⅰ)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(Ⅱ)证明:a1=1,且
(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列。

(Ⅰ)解:由于3×4与均不属于数集{1,3,4},所以该数集不具有性质P.
由于1×2,1×3,1×6,2×3,都属于数集{1,2,3,6},所以该数集具有性质P.
(Ⅱ)证明:因为A={a1,a2,…,an}具有性质P,所以anan中至少有一个属于A.
由于1≤a1<a2<…<an,所以anan>an,故ananA,
从而,故a1=1;
因为1=a1<a2<…<an,所以akan>an,故akanA(k=2,3,…,n).
由A具有性质P可知
又因为
所以
从而

(Ⅲ)证明:由(Ⅱ)知,当n=5时,有,即
因为
所以,故
由A具有性质P可知
,得,且
所以

是首项为1,公比为a2的等比数列。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(1≤a1<a2<…an,n≥2)具有性质P;对任意的i,j(1≤i≤j≤n),aiaj
aj
ai
两数中至少有一个属于A.
(I)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(Ⅱ)证明:a1=1,且
a1+a2+…+an
a
-1
1
+
a
-1
2
+…+
a
-1
n
=an

(Ⅲ)证明:当n=5时,a1,a2,a3,a4,a5成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(1≤a1<a2<…<an,n≥2)具有性质P:对任意的i,j(1≤i≤j≤n),aiaj
ajai
两数中至少有一个属于A.
(1)分别判断数集{1,3,4}与{1,2,3,6}是否具有性质P,并说明理由;
(2)求a1的值;当n=3时,数列a1,a2,a3是否成等比数列,试说明理由;
(3)由(2)及通过对A的探究,试写出关于数列a1,a2,…,an的一个真命题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an},其中0≤a1<a2<…<an,且n≥3,若对?i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个属于A,则称数集A具有性质P.
(Ⅰ)分别判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P,说明理由;
(Ⅱ)已知数集A={a1,a2…a8}具有性质P,判断数列a1,a2…a8是否为等差数列,若是等差数列,请证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(1=a1<a2<…<an,n≥4)具有性质P:对任意的k(2≤k≤n),?i,j(1≤i≤j≤n),使得ak=ai+aj成立.
(Ⅰ)分别判断数集{1,2,4,6}与{1,3,4,7}是否具有性质P,并说明理由;
(Ⅱ)求证:a4≤2a1+a2+a3
(Ⅲ)若an=72,求n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数集A={a1,a2,…,an}(0≤a1<a2<…<an,n≥3)具有性质P:对?i,j(1≤i≤j≤n),aj+ai与aj-ai两数中至少有一个属于A.
(1)分别判断数集{0,1,3}与数集{0,2,4,6}是否具有性质P,说明理由;
(2)求证:a1+a2+…+an=
n2
an
(3)已知数集A={a1,a2…,a8}具有性质P.证明:数列a1,a2,a8是等差数列.

查看答案和解析>>

同步练习册答案