精英家教网 > 高中数学 > 题目详情
△ABC中,∠ABC=90°,PA⊥平面ABC,则图中直角三角形的个数为
4
4
分析:由在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,能推导出BC⊥平面PAB.由此能求出四面体P-ABC中有多少个直角三角形.
解答:解:在Rt△ABC中,∠ABC=90°,
P为△ABC所在平面外一点,PA⊥平面ABC,
∴BC⊥PA,BC⊥AB,
∵PA∩AB=A,
∴BC⊥平面PAB.
∴四面体P-ABC中直角三角形有△PAC,△PAB,△ABC,△PBC.4个.
故答案为:4.
点评:本题考查直线与平面垂直的性质的应用,是基础题.解题时要认真审题,仔细解答,注意等价转化思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,角A、B、C所对的边分别为a、b、c.若a=1,∠B=45°,△ABC的面积S=2,那么△ABC的外接圆的直径等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱锥S-ABC中,△ABC与△ABS是两个共斜边的等腰直角三角形,AB=2a,O为AB上一点,SO⊥平面ABC,点D是BS的中点.求直线AS与直线CD夹角的余弦值.精英家教网

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,
3
2
sinC+
1
2
cosC=1

(1)若△ABC的面积等于
3
,求a,b;
(2)若sinB=2sinA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2
3
,M、N分别为AB、SB的中点.
(1)求二面角N-CM-B的余弦值;
(2)求点B到平面CMN的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广州一模)在△ABC中,∠ABC=60°,AB=2,BC=3,在BC上任取一点D,使△ABD为钝角三角形的概率为(  )

查看答案和解析>>

同步练习册答案