精英家教网 > 高中数学 > 题目详情

若函数f(x)是奇函数,且当x<0时,有f(x)=cos3x+sin2x,则当x>0时,f(x)的表达式为________.

-cos3x+sin2x
分析:根据x<0时,有f(x)=cos3x+sin2x,可得x>0时,-x<0满足函数的解析式,进而根据函数f(x)是奇函数,f(x)=-f(-x)得到当x>0时,f(x)的表达式
解答:当x>0时,-x<0时,
∵当x<0时,有f(x)=cos3x+sin2x,
∴当x>0时,-x<0时,f(-x)=cos(-3x)+sin(-2x)=cos3x-sin2x,
又∵函数f(x)是奇函数,
∴当x>0时,f(x)=-f(-x)=-cos3x+sin2x
故答案为:-cos3x+sin2x
点评:本题考查的知识点是函数解析式的求解及常用方法,熟练掌握奇函数的性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•遂宁二模)设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数f(x)=(
12
)x
为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是
②③④
②③④
 (写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)对任意的x,y∈R,总有f(x)+f(y)=f(x+y),且x<0时,f(x)>0.
(1)求证:函f(x)是奇函数;
(2)求证:函数f(x)是R上的减函数;
(3)若定义在(-2,2)上的函数f(x)满足f(-m)+f(1-m)<0,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011年四川省遂宁市高考数学二模试卷(理科)(解析版) 题型:解答题

设函数f(x)的定义域为D,若存在非零实数,使得对于任意x∈M(M⊆D),有x+l∈D,f(x+l)≥f(x),则称f(x)为M上的l高调函数,现给出下列命题:
①函数为R上的1高调函数;
②函数f (x)=sin 2x为R上的高调函数;
③如果定义域是[-1,+∞)的函数f(x)=x2为[-1,+∞)上的m高调函数,那么实数m的取值范围是[2,+∞);
④如果定义域为R的函教f (x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的4高调函数,那么实数a的取值范围是[一1,1].
其中正确的命题是     (写出所有正确命题的序号).

查看答案和解析>>

同步练习册答案