精英家教网 > 高中数学 > 题目详情

函数f(x)x=a处可导,则等于

[  ]

A

Bf(h)

Cf(a)

D

答案:A
解析:

点金:本题考查函数的导数的概念,应注意导数公式的变形.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
asinωx-acosωx(a>0,ω>0)
的图象上两相邻最高点的坐标分别为(
π
3
,2)
(
3
,2)

(1)求a与ω的值;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(A)=2,求
b-2c
acos(600+C)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x
+alnx-2(a>0)

(Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;
(Ⅱ)若对于?x∈(0,+∞)都有f(x)>2(a-1)成立,试求a的取值范围;
(Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx-x+
a-1x

(Ⅰ)若a=4,求f(x)的极值;
(Ⅱ)若f(x)在定义域内无极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

探究函数f(x)=x+
4
x
,x∈(0,+∞)的最小值,并确定取得最小值时x的值.列表如下:
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
请观察表中值y随x值变化的特点,完成以下的问题.
函数f(x)=x+
4
x
(x>0)在区间(0,2)上递减;
函数f(x)=x+
4
x
(x>0)在区间
(2,0)
(2,0)
上递增.
当x=
2
2
时,y最小=
4
4

证明:函数f(x)=x+
4
x
(x>0)在区间(0,2)递减.
思考:(直接回答结果,不需证明)
(1)函数f(x)=x+
4
x
(x<0)有没有最值?如果有,请说明是最大值还是最小值,以及取相应最值时x的值.
(2)函数f(x)=ax+
b
x
,(a<0,b<0)在区间
[-
b
a
,0)
[-
b
a
,0)
 和
(0,
b
a
]
(0,
b
a
]
上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•潍坊一模)设函数f(x)=
1
3
mx3+(4+m)x2,g(x)=alnx
,其中a≠0.
( I )若函数y=g(x)图象恒过定点P,且点P在y=f(x)的图象上,求m的值;
(Ⅱ)当a=8时,设F(x)=f′(x)+g(x),讨论F(x)的单调性;
(Ⅲ)在(I)的条件下,设G(x)=
f(x),x≤1
g(x),x>1
,曲线y=G(x)上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且该三角形斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案