精英家教网 > 高中数学 > 题目详情
已知数列{an}中,a1=1,且对于任意的正整数m,n都有am+n=aman+am+an,则数列{an}的通项公式为
2n-1
2n-1
分析:先根据条件得到an+1=ana1+an+a1=2an+1;进而得到数列{an+1}是以a1+1=2为首项,2为公比的等比数列;即可求出答案.
解答:解:因为数列{an}中,a1=1,且对于任意的正整数m,n都有am+n=aman+am+an
∴an+1=ana1+an+a1=2an+1;
∴an+1+1=2(an+1);
an+1+1
an+1
=2;
故数列{an+1}是以a1+1=2为首项,2为公比的等比数列;
∴an+1=2×2n-1=2n
∴an=2n-1.
故答案为;   2n-1.
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意递推公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案