精英家教网 > 高中数学 > 题目详情
已知中心在原点,焦点在x轴上的椭圆C的离心率为
1
2
,其中一个顶点是抛物线x2=-4
3
y
的焦点.
(I)求椭圆C的标准方程;
(Ⅱ)是否存在过点P(2,1)的直线l与椭圆C交于不同的两点A,B满足
PA
PB
=
5
4
,若存在,求出直线l的方程;若不存在,请说明埋由.
(I)设椭圆的标准方程为
x2
a2
+
y2
b2
=1
(a>b>0),则
∵椭圆C的离心率为
1
2
,其中一个顶点是抛物线x2=-4
3
y
的焦点,
b=
3
c
a
=
1
2

∵c2=a2-b2
∴a=2,c=1,
∴椭圆的标准方程为
x2
4
+
y2
3
=1

(II)若存在过点P(2,1)的直线l满足条件,则l的斜率存在
设方程为y=k(x-2)+1,代入椭圆方程,可得(3+4k2)x2-8k(2k-1)x+16k2-16k-8=0
设A(x1,y1),B(x2,y2),则由△=32(6k+3)>0,可得k>-
1
2

且x1+x2=
8k(2k-1)
3+4k2
,x1x2=
16k2-16k-8
3+4k2

PA
PB
=
5
4

(x1-2)(x2-2)+(y1-1)(y2-1)=
5
4

∴[x1x2-4(x1+x2)+4](1+k2)=
5
4

[
16k2-16k-8
3+4k2
-4•
8k(2k-1)
3+4k2
+4]
(1+k2)=
5
4

4k2+4
3+4k2
=
5
4

k>-
1
2
,∴k=
1
2

∴存在过点P(2,1)的直线l与椭圆C交于不同的两点A,B满足
PA
PB
=
5
4
,其方程为y=
1
2
x
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线的一条渐近线为mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任意取一个值,使得双曲线的离心率大于3的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大兴区一模)已知中心在原点,焦点在x轴上的双曲线的离心率为
3
2
,实轴长为4,则双曲线的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在x轴上的双曲线C,过点P(2,
3
)且离心率为2,则双曲线C的标准方程为
x2
3
-
y2
9
=1
x2
3
-
y2
9
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•合肥模拟)已知中心在原点,焦点在x轴上的双曲线的一条渐近线的方程为y=
1
2
x
,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点,焦点在坐标轴上的双曲线的一条渐近线方程为
3
x-y=0
,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案