精英家教网 > 高中数学 > 题目详情
数列{an}中,已知a2=12,an+1-an=2(n≥1).(1)求a1;(2)求数列{an}前5项和S5
分析:(1)根据递推关系an+1-an=2(n≥1),令n=1,根据已知条件可求出所求;
(2)直接根据等差数列的求和公式Sn=na1+
n(n-1)
2
d
进行求解即可.
解答:解:(1)令n=1得a2-a1=2,而a2=12,则a1=10;
(2)此数列是公差为2的等差数列,由此可知,S5=5×10+
5(5-1)
2
×2=70
点评:本题主要考查了等差数列,以及等差数列的求和,同时考查了基本运算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文科)(1)若数列{an1}是数列{an}的子数列,试判断n1与l的大小关系;
(2)①在数列{an}中,已知{an}是一个公差不为零的等差数列,a5=6.当a3=2时,若存在自然数n1,n2,…,nl,…满足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…是等比数列,试用t表示n1
②若存在自然数n1,n2,…,nl,…满足5<n1<n2<…<nl<…且a3,a5,a7,a9…an…构成一个等比数列.求证:当a3是整数时,a3必为12的正约数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在各项均为正数的数列{an}中,已知点(an,an+1)(n∈N*)在函数y=2x的图象上,且a25=8
(1)求证:数列{an}是等比数列,并求出其通项公式;
(2)若数列{bn}的前n项和为Sn,且bn=an+n,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=2,a2=3,当n≥2时,an+1是an•an-1的个位数,则a2011=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,an+1=2an+2(n∈N*
(Ⅰ)求证:数列{an+2}是等比数列;
(Ⅱ) 求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=1,a2=5,an+2=an+1-an(n∈N*),则a2011=(  )

查看答案和解析>>

同步练习册答案