精英家教网 > 高中数学 > 题目详情
如图,圆心O与圆心O′相交于A、B,过A引直线CD,EF分别交两圆于C、D、E、F,EC与DF的延长线相交于P,求证:∠P+∠CBD=180°.
分析:根据同弧所对的圆周角相等,得到两个角∠E与∠CBA是相等的,根据四边形ABDF内接于⊙O′得到∠PFA与∠ABD相等,根据等量代换和三角形内角和是180°,得到结果.
解答:证明:连接AB,
∵∠E与∠CBA是AC所对的圆周角,
∴∠E=∠CBA,
又四边形ABDF内接于⊙O′,
∴∠PFA=∠ABD,
∴∠E+∠PFE=∠CBA+∠ABD=∠CBD,
又∵∠E+∠P+∠PFE=180°,
∴∠P+∠CBD=180°.
点评:本题题考查圆周角定理同弧所对的圆周角相等、圆内接四边形的一个外角等于不相邻的内角的性质,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在A、B、C、D四小题中只能选做2题,每小题10分,共计20分,请在答题纸指定区域内作答,解答应写出文字说明、证明过程或演算步骤.
A.选修4-1:(几何证明选讲)
如图,从O外一点P作圆O的两条切线,切点分别为A,B,
AB与OP交于点M,设CD为过点M且不过圆心O的一条弦,
求证:O,C,P,D四点共圆.
B.选修4-2:(矩阵与变换)
已知二阶矩阵M有特征值λ=3及对应的一个特征向量e1=[
 
1
1
],并且矩阵M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
C.选修4-4:(坐标系与参数方程)
在极坐标系中,曲线C的极坐标方程为p=2
2
sin(θ-
π
4
),以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为
x=1+
4
5
t
y=-1-
3
5
t
(t为参数),求直线l被曲线C所截得的弦长.
D.选修4-5(不等式选讲)
已知实数x,y,z满足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆O的圆心O在Rt△ABC的直角边BC上,该圆与直角边AB相切,与斜边AC交于D,E,AD=DE=EC,AB=
14

(I)求BC的长;
(II)求圆O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆心O与圆心O′相交于A、B,过A引直线CD,EF分别交两圆于C、D、E、F,EC与DF的延长线相交于P,求证:∠P+∠CBD=180°.

查看答案和解析>>

科目:高中数学 来源:2010年高考数学预测系列试卷:解答题3(解析版) 题型:解答题

如图,圆心O与圆心O′相交于A、B,过A引直线CD,EF分别交两圆于C、D、E、F,EC与DF的延长线相交于P,求证:∠P+∠CBD=180°.

查看答案和解析>>

同步练习册答案