精英家教网 > 高中数学 > 题目详情
定义在(-1,1)的函数f(x),对于任意的x,y∈(-1,1),都有f(
x+y
1+xy
)=f(x)+f(y)
,且x>0时,f(x)>0,f(
1
2
)=
1
2

(1)判断f(x)的奇偶性并证明
(2)证明f(x)在区间(-1,1)上是增函数
(3)若f(x)<m2-2am+1,对所有x∈[-
4
5
4
5
]
,a∈[-1,1]恒成立,求实数m的取值范围.
分析:(1)判断函数f(x)的奇偶性:①判断函数定义域是否关于原点对称,②判断f(-x)与f(x)的关系.
(2)证明函数f(x)的单调性,利用定义,分五步①设元,②作差,③变形,④判号,⑤下结论.
(3)令x=y=
1
2
得:f(
4
5
)=1,由(2)知,f(x)在[-
4
5
4
5
]上是增函数,f(x)<m2-2am+1,对所有x∈[-
4
5
4
5
],a∈[-1,1]恒成立?m2-2am≥0,a∈[-1,1]恒成立.构造函数g(a)=m2-2am,对所有的a∈[-1,1],g(a)≥0成立即可求得实数m的取值范围.
解答:解:(1)函数f(x)在区间(-1,1)上是奇函数.
证明:∵函数定义域为(-1,1),
令x=y=0得f(0)=0,
令y=-x,则有f(x)+f(-x)=0,得f(-x)=-f(x),
所以函数f(x)在区间(-1,1)上是奇函数.
(2)设-1<x1<x2<1,
则f(x2)-f(x1)=f(x2)+f(-x1)=f(
x2-x1
1-x2x1
),而x2-x1>0,|x1||x2|<1
∴1-x1x2>0
x2-x1
1-x2x1
>0,又x>0时,f(x)>0,
∴f(
x2-x1
1-x2x1
)>0,即f(x2)>f(x1),
∴f(x)在区间(-1,1)上是增函数;
(3)∵f(
1
2
)=
1
2
,f(
x+y
1+xy
)=f(x)+f(y),
∴令x=y=
1
2
得:f(
1
2
+
1
2
1+
1
2
×
1
2
)=2f(
1
2
)=1,即f(
4
5
)=1.
因为函数f(x)在(-1,1)上是增函数,故在[-
4
5
4
5
]上是增函数,
又f(
4
5
)=1,
f(x)<m2-2am+1,对所有x∈[-
4
5
4
5
],a∈[-1,1]恒成立?1<m2-2am+1,对所有x∈[-
4
5
4
5
],a∈[-1,1]恒成立,
即m2-2am>0,a∈[-1,1]恒成立.
记g(a)=m2-2am,对所有的a∈[-1,1],g(a)>0成立,
只需g(a)在[-1,1]上的最小值大于等于0.即g(-1)>0;g(1)>0.
解得:m<-2或m>2.
故m的取值范围为m<-2或m>2.
点评:本题考查了抽象函数的奇偶性,单调性,突出考查函数单调性的证明,考查赋值法与构造函数思想,转化思想的综合运用,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0.
(1)证明函数f(x)在[-1,1]上单调递增;
(2)解不等式f(x+
1
2
)<f(1-x);
(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)是定义在区间[-1,1]上的奇函数,且f(1)=1,若m、n∈[-1,1],m+n≠0时,有
f(m)+f(n)
m+n
>0.
(1)证明函数f(x)在[-1,1]上单调递增;
(2)解不等式f(x+
1
2
)<f(1-x);
(3)若f(x)≤t2-2at+1对所有x∈[-1,1],a∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省五校协作体高二(上)联合竞赛数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省新余四中高三(上)第一次周周练数学试卷(理科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市白鹭洲中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:解答题

已知定义在区间[-1,1]上的函数为奇函数..
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.
(3)f(x)在x∈[m,n]上的值域为[m,n](-1≤m<n≤1 ),求m+n的值.

查看答案和解析>>

同步练习册答案