精英家教网 > 高中数学 > 题目详情
(2012•北京模拟)如图,AB是圆O的直径,PA垂直于圆O所在的平面,C是圆周上不同于A、B的任意一点.
(1)求证:BC⊥平面PAC;
(2)求证:平面PAC⊥平面PBC.
分析:(1)利用线面垂直的性质可得线线垂直,再利用线面垂直的判定定理,可得结论;
(2)利用面面垂直的判定,可得平面PAC⊥平面PBC.
解答:证明:(1)因为PA⊥平面ABC,且BC?平面ABC,所以PA⊥BC.
又△ABC中,AB是圆O的直径,所以BC⊥AC.
又PA∩AC=A,所以BC⊥平面PAC.
(2)由(1)知BC⊥平面PAC,∵BC?平面PBC,
∴平面PAC⊥平面PBC.
点评:本题考查直线与平面垂直的判定定理,平面与平面垂直的判定定理,考查空间图形的位置关系,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•北京模拟)已知a、b、c、d是公比为2的等比数列,则
2a+b
2c+d
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)函数y=
log
2
3
(3x-2)
的定义域为
2
3
,1]
2
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)如图,在四棱锥P-ABCD中,PA⊥平面AC,且四边形ABCD是矩形,则该四棱锥的四个侧面中是直角三角形的有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)在数列{an}中,a1=
3
an+1=
1+
a
2
n
-1
an
(n∈N*)
.数列{bn}满足0<bn
π
2
,且 an=tanbn(n∈N*).
(1)求b1,b2的值;
(2)求数列{bn}的通项公式;
(3)设数列{bn}的前n项和为Sn.若对于任意的n∈N*,不等式Sn≥(-1)nλbn恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•北京模拟)甲、乙、丙、丁四个人进行传球练习,每次球从一个人的手中传入其余三个人中的任意一个人的手中.如果由甲开始作第1次传球,经过n次传球后,球仍在甲手中的所有不同的传球种数共有an种.
(如,第一次传球模型分析得a1=0.)
(1)求 a2,a3的值;
(2)写出 an+1与 an的关系式(不必证明),并求 an=f(n)的解析式;
(3)求 
anan+1
的最大值.

查看答案和解析>>

同步练习册答案