精英家教网 > 高中数学 > 题目详情

如图,在三棱锥V-ABC中,VC⊥底面ABCACBCDAB的中点,且ACBCa,∠VDCθ.

(Ⅰ)求证:平面VAB⊥平面VCD

(Ⅱ)试确定角θ的值,使得直线BC与平面VAB所成的角为.

本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.

解法1:(Ⅰ)是等腰三角形,又的中点,

,又底面.于是平面

平面平面平面

(Ⅱ) 过点在平面内作,则由(Ⅰ)知平面

连接,于是就是直线与平面所成的角.

依题意,所以

中,

中,

故当时,直线与平面所成的角为

解法2:(Ⅰ)以所在的直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,则

于是,

从而,即

同理

.又平面

平面

平面平面

(Ⅱ)设平面的一个法向量为

则由

可取,又

于是

故交时,直线与平面所成的角为

解法3:(Ⅰ)以点为原点,以所在的直线分别为轴、轴,建立如图所示的空间直角坐标系,则,于是

从而,即

同理,即

平面

平面

平面平面

(Ⅱ)设平面的一个法向量为

则由,得

可取,又

于是

故交时,

即直线与平面所成角为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<
π
2
).
(Ⅰ)求证:平面VAB⊥平面VCD;
(Ⅱ)当确定角θ的值,使得直线BC与平面VAB所成的角为
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<
π2
)

(1)求证:平面VAB⊥平面VCD;
(2)当角θ变化时,求直线BC与平面VAB所成的角的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥V-ABC中,VA⊥平面ABC,∠ABC=90°,且AC=2BC=2VA=4.
(1)求证:平面VBA⊥平面VBC;
(2)求二面角A-VC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=45°.
(I)求证:平面VAB⊥平面VCD;
(II)求异面直线VD和BC所成角的余弦.

查看答案和解析>>

科目:高中数学 来源:2013年山西省忻州实验中学高考数学一模试卷(理科)(解析版) 题型:解答题

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ
(1)求证:平面VAB⊥平面VCD;
(2)当角θ变化时,求直线BC与平面VAB所成的角的取值范围.

查看答案和解析>>

同步练习册答案