精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2-(a+2)x+1.若a为整数,且函数f(x)在(-2,-1)内恰有一个零点,求a的值.
分析:分别讨论a的取值,利用函数f(x)在(-2,-1)内恰有一个零点,建立条件关系即可求解.
解答:解:(1)a=0时,由f(x)=ax2-(a+2)x+1=-2x+1=0,得x=
1
2
,所以f(x)在(-2,-1)内没有零点;
(2)a≠0时,由f(x)=ax2-(a+2)x+1,△=(a+2)2-4a=a2+4>0恒成立,
知f(x)=ax2-(a+2)x+1必有两个零点.        
若f(-2)=0,即4a+2(a+2)+1=0,解得a=-
5
6
∉Z

若f(-1)=0,即a+(a+2)+1=0,解得a=-
3
2
∉Z

所以f(-2)f(-1)≠0.                       
又因为函数f(x)在(-2,-1)内恰有一个零点,
所以f(-2)f(-1)<0,即(6a+5)(2a+3)<0.
解得-
3
2
<a<-
5
6

由a为整数,所以a=-1,
综上所述,所求整数a的值为-1.
点评:本题主要考查函数零点的判断和应用,注意对a进行讨论,利用根的存在性定理是解决函数零点的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案