精英家教网 > 高中数学 > 题目详情
设函数f(x)=ax,g(x)=|x-a|,a∈R.
(1)当a=2时,解不等式f(x)>g(x);
(2)记F(x)=f(x)-g(x),判断F(x)的奇偶性,并说明理由;
(3)设G(x)=f(x)g(x),且G(x)在[1,+∞)上递增,求实数a的取值范围.
分析:(1)当a=2时,转化为2x>|x-2|?-2x<x-2<2x,解不等式即可求出结论.
(2)先得到F(x)=ax-|x-a|,再分a=0和a≠0分别讨论得到其奇偶性即可;(注意用定义)
(3)先去绝对值符号得到函数解析式,再通过对a和0分情况讨论,结合分段函数单调性的求法即可得出结论.
解答:解:(1)2x>|x-2|?-2x<x-2<2x,得解集为(
2
3
,+∞)
…(4分)
(2)F(x)=ax-|x-a|,
当a=0时,F(x)=-|x|,F(-x)=-|-x|=-|x|,
所以F(x)=F(-x),F(x)为偶函数;…(6分)
当a≠0,F(a)=a2,F(-a)=-a2-2|a|
∴F(a)+F(-a)=-2|a|≠0
  F(a)-F(-a)=2a2+2|a|≠0
所以,F(x)为非奇非偶函数.  …(10分)
(3)G(x)=ax|x-a|=
a(x-
a
2
)
2
-
a3
4
x≥a
-a(x-
a
2
)
2
+
a3
4
x<a
,…(12分)
①当a=0时,G(x)=0是常数函数,不合题意.
当a>0时,G(x)在[a,+∞)和(-∞,
a
2
]
上递增,所以a∈(0,1].…(15分)
②当a<0时,G(x)在[a,
a
2
]
上递增,在[
a
2
,+∞)
和(-∞,a]上递减,不合题意.
综上所述,实数a的取值范围是(0,1]…(18分)
点评:本题考查函数的奇偶性,单调性的判定以及分类讨论思想,是对函数知识的综合考查.在解第三问时,须注意和分段函数的单调性相结合.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ax+
xx-1
(x>1),若a是从1,2,3三个数中任取一个数,b是从2,3,4,5四个数中任取一个数,求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+b的图象经过点(1,7),又其反函数的图象经过点(4,0),求函数的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax+bx-cx,其中a,b,c是△ABC的三条边,且c>a,c>b,则“△ABC为钝角三角形”是“?x∈(1,2),使f(x)=0”(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)(文)设函数f(x)=ax+1-2(a>1)的反函数为y=f-1(x),则f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网设函数f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a为如图所示的程序框图中输出的结果,则f(x)的展开式中常数项是(  )
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步练习册答案