精英家教网 > 高中数学 > 题目详情
已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R},

(1)求t、m的值;

(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.

解:(1)由题意,1、m是方程x2-3x+t=0的两根,

    ∴

     (2)∵f(x)在(-∞,1)上递增,

    ∴≥1a≥2,而loga(-mx2+3x+2-t)=loga(-2x2+3x).

    故原不等式等价于0<-2x2+3x<1

    *0<x<或1<x<.

    故原不等式的解集是{x|0<x<或1<x<}.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2-3x+m<0的解集为{x|1<x<n,n∈R},函数f(x)=-x2+ax+4.
(1)求m,n的值;
(2)若y=f(x)在(-∞,1]上递增,解关于x的不等式loga(-nx2+3x+2-m)<0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知不等式x2–3x+t<0的解集为{x|1<x<m, m??R}

(1)求t, m的值;

(2)若f(x)= –x2+ax+4在(–∞,1)上递增,求不等式log a (–mx2+3x+2–t)<0的解集。

查看答案和解析>>

科目:高中数学 来源:金山区一模 题型:解答题

已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省厦门二中高二(上)数学周末练习7(文科)(解析版) 题型:解答题

已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R}
(1)求t,m的值;
(2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集.

查看答案和解析>>

同步练习册答案