精英家教网 > 高中数学 > 题目详情
已知a,b,c分别为△ABC的三内角A,B,C的对边,且acosC+ccosA=2bcosB.
(1)求角B的大小;
(2)求sinA+sinC的取值范围.
分析:(1)利用已知条件以及正弦定理求出B的正弦值,然后求角B的大小;
(2)通过三角形的内角和,化简sinA+sinC为A的表达式,通过A的范围求出函数值的取值范围.
解答:解:(1)由acosC+ccosA=2bcosB以及正弦定理可知,
sinAcosC+sinCcosA=2sinBcosB,
即sin(A+C)=2sinBcosB.
因为A+B+C=π,所以sin(A+C)=sinB≠0,
所以cosB=
1
2

∵B∈(0,π)
∴B=
π
3

(2)sinA+sinC=sinA+sin(
3
-A

=
3
2
sinA+
3
2
cosA

=
3
sin(A+
π
6
)

∵A∈(0,
3
)

π
6
<A+
π
6
< 
6

1
2
<sin(A+
π
6
)≤1

所以sinA+sinC的取值范围(
3
2
3
]
点评:本题考查正弦定理,三角形的内角和的应用,也可以利用余弦定理解答本题,注意角的范围的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC的三个内角A,B,C的对边,且(b+a+c)(b-a-c)+2
3
absinC=0

(1)求B
(2)若b=2,△ABC的面积为
3
,求a,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若a=2,△ABC的面积为
3
,证明△ABC是正三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)已知a,b,c分别为△ABC三个内角A,B,C的对边,2bcosc=2a-c
(I)求 B;
(II)若△ABC的面积为
3
,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•静安区一模)已知a,b,c分别为△ABC三个内角A、B、C所对的边长,a,b,c成等比数列.
(1)求B的取值范围;
(2)若x=B,关于x的不等式cos2x-4sin(
π
4
+
x
2
)sin(
π
4
-
x
2
)+m>0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c分别为△ABC三个内角A,B,C的对边,acosC+
3
asinC-b-c=0

(1)求A;
(2)若△ABC的面积S=5
3
,b=5,求sinBsinC的值.

查看答案和解析>>

同步练习册答案