精英家教网 > 高中数学 > 题目详情
在等差数列{an}中,已知S6=10,S12=30,则S18=______.
由等差数列的前n项和公式可得,
6a1+15d=10
12a1+66d=30

解方程可得,a1=
35
36
,d=
5
18

∴S18=18a1+
18×17d
2
=18×
35
36
+9×17×
5
18
=60
故答案为:60
法二;由等差数列的性质可知,s6,s12-s6,s18-s12成等差数列
即10,20,s18-30成等差数列
∴10+s18-30=40
∴s18=60
故答案为:60
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在等差数列{an}中,a1=-2010,其前n项的和为Sn.若
S2010
2010
-
S2008
2008
=2,则S2010=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,a1+3a8+a15=60,则2a9-a10的值为
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在等差数列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的两个根,那么使得前n项和Sn为负值的最大的n的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,已知a1=2,a2+a3=13,则a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在等差数列{an}中,若S4=1,S8=4,则a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步练习册答案