精英家教网 > 高中数学 > 题目详情
已知定义在R上的函数f(x)=x2-(3-a)x+2(1-a)(其中a∈R).
(Ⅰ)解关于x的不等式f(x)>0;
(Ⅱ)若不等式f(x)≥x-3对任意x>2恒成立,求a的取值范围.
分析:(I)比较函数两零点的大小,利用分类讨论思想解不等式问题即可;
(II)利用基本不等式求出函数的最大值,从而求出a的范围.
解答:解:(Ⅰ)∵f(x)=(x-2)[x-(1-a)],
∴f(x)>0?(x-2)[x-(1-a)]>0,
当a<-1时,不等式的解集为(-∞,2)∪(1-a,+∞);
当a=-1时,不等式的解集为(-∞,2)∪(2,+∞);
当a>-1时,不等式的解集为(-∞,1-a)∪(2,+∞).
(Ⅱ)不等式f(x)≥x-3,即a≥-
x2-4x+5
x-2
恒成立,
又当x>2时,-
x2-4x+5
x-2
=-(x-2+
1
x-2
)≤-2
(当且仅当x=3时取“=”号),
∴a≥-2.
点评:本题考查利用分类讨论思想解不等式,及利用基本不等式求函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在R上的函数y=f(x)满足下列条件:
①对任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函数,
则下列不等式中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  则:
①f(3)的值为
0
0

②f(2011)的值为
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)满足f(x+1)=-f(x),且x∈(-1,1]时f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,则f(3)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)是偶函数,对x∈R都有f(2+x)=f(2-x),当f(-3)=-2时,f(2013)的值为(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),对任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2013)=(  )
A、0B、2013C、3D、-2013

查看答案和解析>>

同步练习册答案