精英家教网 > 高中数学 > 题目详情
(1)求原点到直线l1:5x-12y-9=0的距离;

(2)求点P(-1,2)到直线l2:2x+y-10=0的距离.

解:(1)原点到直线l1的距离d=;

(2)点P到直线l2的距离d==2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
设矩阵 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩阵M的逆矩阵M-1
(Ⅱ)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小题满分7分)选修4-4:坐标系与参数方程
在直接坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cos∂
y=sin∂
(∂为参数)

(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
),判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.
(3)(本小题满分7分)选修4-5:不等式选讲
设不等式|2x-1|<1的解集为M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l:mx-y-2m-1=0,m是实数.
(I)直线l恒过定点P,求定点P的坐标;
(II)若原点到直线l的距离是2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•兰州一模)在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为
x=
3
cosα
y=sinα

(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为(4,
π
2
)
,判断点P与直线l的位置关系;
(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在直角坐标系xOy中,直线l的参数方程为
x=t-3
y=
3
t
(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C的极坐标方程为ρ2-4ρcosθ+3=0.
(1)求直线l普通方程和曲线C的直角坐标方程;
(2)设点P是曲线C上的一个动点,求它到直线l的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•珠海二模)(文)在△ABC中,A点的坐标为(3,0),BC边长为2,且BC在y轴上的区间[-3,3]上滑动.
(1)求△ABC外心的轨迹方程;
(2)设直线l:y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求
|EF|d
的最大值.并求出此时b的值.

查看答案和解析>>

同步练习册答案